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Abstract
We provide new evidence on the drivers of the early US COVID-19 pandemic and develop

a methodology that future researchers can use to similarly analyze the outbreaks of new dis-

eases. We combine an epidemiological model of disease transmission with quasi-random vari-

ation arising from the timing of stay-at-home-orders to estimate the causal roles of policy

interventions and voluntary social distancing. We then relate the residual variation in disease

transmission rates to observable features of cities. We estimate significant impacts of policy

and social distancing responses, but we show that the magnitude of policy effects was modest,

and most social distancing was driven by voluntary responses. Moreover, we show that nei-

ther policy nor rates of voluntary social distancing explained a meaningful share of geographic

variation. The most important predictors of which cities were hardest hit by the pandemic were

exogenous characteristics such as population and density.
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1 Introduction

The course of the COVID-19 pandemic in the US varied dramatically across space and time. In

the early months, the epicenter was primarily large cities on the West Coast and in the Northeast.

Slow growing outbreaks in Seattle and San Francisco were followed by rapid surges of cases in

cities such as New York and Boston. Other large cities such as Dallas, Atlanta, Phoenix, Miami,

and Denver were largely spared.

Popular discussion and prior work has pointed to a number of plausible drivers of this variation,

with policy differences as one leading explanation.1 However, evidence below and in prior work

clearly shows that substantial behavioral changes preceded the first stay-at-home orders, and that

mobility levels remained significantly depressed even after many of these policies were lifted—

suggesting voluntary social distancing behaviors may have been important. Other potential drivers

include physical characteristics of cities such as population size and density that might have af-

fected virus transmission rates, or connections via international flights to early overseas epicenters

such as China and Italy.

In this paper, we provide new evidence on the importance of policy relative to these other

factors during the first months of the US pandemic (through April 2020). Our empirical strategy

exploits short-run changes around the onset of policy in event-study and difference-in-difference

specifications within the context of an SIRD (Susceptible, Infected, Recovered, Deceased) model

of disease transmission. By taking the ratio between the estimated effects of policy on disease

transmission and the estimated effects of policy on social distancing behaviors, we are able to

provide causal estimates for the change in disease transmission rates per unit change in social

distancing—allowing us to decompose the role that policy and social distancing behaviors played

in driving temporal and geographic variation during the early pandemic period. We then relate the

residual variation in disease transmission rates to observable features of cities.

We begin by using event-study designs to estimate the short-run effects of stay-at-home orders

on social distancing. We measure social distancing using visits to points of interest (POIs) such

as shops, parks, hospitals, and other places measured in cell phone location data aggregated by a

company called SafeGraph. We combine POI visits with data on the implementation date of stay-

at-home orders at the Combined Statistical Area (CSA) level. Our estimates suggest that POI visits

1For example, New York Governor Andrew Cuomo was frequently blamed for the severity of the crisis in New York,
with critics citing his slow response to the pandemic and his derision of Mayor De Blasio’s earlier suggestion of
closing down New York City (Gold and Robinson 2020).
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dropped by 18 percent on the day after a stay-at-home order was implemented. We complement

our GPS data with information on consumer spending and small business employment—finding

that consumer spending dropped by 7 percent and employment dropped by 12 percent.

We next estimate the effects of stay-at-home orders on disease transmission in the context of an

SIRD epidemiological model (Kermack and McKendrick 1927). Infected people infect Susceptible

people at rate βt and recover at rate γ . The reproduction number R—the number of people to

whom one Infected person transmits the virus—is βt/γ . If a stay-at-home order is modeled as a

proportional effect τ on the contact rate, then we can estimate τ in a linear regression framework

with the natural log of the number of new cases on the left-hand side. We find that stay-at-home

orders reduced the contact rate by 9 to 14 percent for different plausible values of γ . We show that

our estimator performs well when estimated on data simulated from a SIRD model.

We use these estimates to examine the share of the temporal variation in health, social distanc-

ing, and economic outcomes that can be attributed to stay-at-home orders versus voluntary and

other policy responses. Consistent with other work released around the same time as our initial

May 2020 working paper, we find that much of the reduction in POI visits pre-dated stay-at-home

orders (Brzezinski et al. 2020; Chetty et al. 2024; Gupta et al. 2021; Sears et al. 2023). We

calculate that by mid-April 2020, the short run effects of stay-at-home orders accounted for only

16 percent of observed social distancing, 16 percent of observed reductions in economic activity

(measured by small business employment), and 13 percent of the reduction in contact rate.

Next, we use our previous estimates to compute the counterfactual transmission rates if policy,

and subsequently social distancing rates, were equalized across all CSAs. We find that neither

policy nor social distancing rates explain the geographic variation in transmission rates. Rather,

fixed differences across CSAs were the primary drivers. Using a lasso model to select features of

the data that are highly predictive of differential transmission rates, we find that population and

population density explain nearly half of the average differences across high and low transmission

CSAs, with racial composition and partisanship explaining a smaller share. Our model accurately

predicts transmission rates in epicenters, such as New York City. These results suggest that much

of the observed variation across CSAs was not driven by different policy or voluntary behavioral

responses, but was driven by invariant characteristics of CSAs.

Lastly, we use our estimates to examine the effect of counterfactual policies on the overall

prevalence of the virus in the United States. While policy explains a small proportion of the

temporal variation in case growth and an even smaller proportion of the geographic variation,
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policy still led to an important reduction in cases. Absent the observed policy response, there

would have been 494,000 more confirmed cases by April 30th, 2020 and 14,800 more deaths. In

contrast, a uniform stay-at-home order implemented on March 17th, 2020 (the effective date of the

first county-level stay-at-home order) would have resulted in 154,000 fewer cases by April 30th.

We emphasize a number of important caveats. Our GPS-based social distancing measure cap-

tures overall movement patterns without distinguishing activity with a high vs. low risk of virus

transmission. Our measures of economic cost only consider two dimensions of policies’ overall

economic impact, and these are captured imperfectly. Our measure of health impact relies on the

assumptions of our SIRD model, is overall relatively imprecise, and may be biased by factors such

as endogenous reporting of COVID-19 cases. In each case, we are able to capture only short-term,

on-impact effects. We provide a set of data points that speak to the benefits and costs of social

distancing policies but stop well short of a comprehensive welfare analysis. Moreover, our analy-

sis focuses on the early onset of the pandemic. Predictors and drivers of temporal or geographic

variation later in the pandemic may have been different.2 Our analysis also does not distinguish

whether policy- and social distancing-induced reductions in cases during the onset of the pan-

demic permanently avoided these negative health outcomes, or whether they instead delayed these

infections (potentially still “flattening the curve” and avoiding health care capacity constraints and

unvaccinated infections).3

Our work connects to several research areas. First, a series of recent papers used GPS data

from SafeGraph or similar providers to quantify social distancing and estimate the effects of stay-

at-home orders and other policies (Alexander and Karger 2023; Allcott et al. 2020; Chen et al.

2020a; Engle et al. 2020; Goolsbee and Syverson 2021; Painter and Qui 2021; Sears et al. 2023).

Second, several recent papers have studied the effects of stay-at-home policies on economic out-

comes (Baker et al. 2020; Bartik et al. 2020; Chen et al. 2020b; Chetty et al. 2024; Kong and

Prinz 2020; Lin and Meissner 2020). Third, another set of papers quantified the effects of regula-

tion on health outcomes (Childs et al. 2021; Flaxman et al. 2020; Fowler et al. 2020; Friedson et

al. 2021; Greenstone and Nigam 2020; Lasry et al. 2020; Lin and Meissner 2020). Collectively,

these contemporaneous literatures have reached a growing consensus (supported by our analysis)

that the majority of social distancing was voluntary rather than policy-induced. However, these

2For example, Wallace et al. (2023) show that excess death rates during the COVID-19 pandemic were higher for
Republican voters after COVID-19 vaccines were made available to all adults (May 2021), but not before.

3See Budish (2024) for analysis of mitigation policies sufficient to keep the effective reproduction number below
one, resulting in falling infections until a vaccine or cure can be developed. See Rachel (2024) for analysis of how
temporary mitigation policies might increase the likelihood of subsequent waves in the absence of a vaccine or cure.
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literatures have not fully pinned down the drivers of pandemic outbreaks or the causal effect of

policy and social distancing on health outcomes. In the epidemiological literature, there is a set

of what economists might call “structural” models that use Bayesian techniques to estimate the

reproduction number R; these estimates often pay less attention to identifying the causal effect

of policies on R (Cori et al. 2013; Thompson et al. 2013). In the economics literature, there is

a set of papers that use reduced form event-study approaches to estimate the effects of policies

on some measure of disease transmission, but many of these papers are not closely tied to struc-

tural models of disease transmission. Our paper forms a bridge between these two lines of work

by deriving simple linear estimating equations (which are useful for standard quasi-experimental

analysis) from structural epidemiological models and using these estimates to decompose the role

of various drivers in explaining the temporal and geographic variation of virus transmission in the

early months of a pandemic.4 Our methodology may also serve as a blueprint for future researchers

seeking to analyze the outbreaks of new diseases.

2 Data

2.1 Policy Data

We explore both stay-at-home and business closure policies in this paper. Due to the decentral-

ized policy response of states, cities, and counties, there is no single resource documenting non-

pharmaceutical interventions (NPIs) in the United States. To get the best coverage of these NPIs,

we combine data from four sources and define both our stay-at-home and business closure policies

by sequentially assigning enforcement dates by data source. We prioritize the data sources in the

following way (first to last priority): the New York Times (Mervosh et al. 2020a), Keystone Strat-

egy, a crowdsourcing effort from Stanford and University of Virginia, and Hikma Health. Once

a state enacted a policy, the counties inherited the policy of the state. In Appendix Table A2, we

provide summary statistics reporting the share of county policies from each source. We visualize

the distribution of county stay-at-home order implementation dates over time in Appendix Figure

A1. Additional detail on data construction can be found in Appendix Section A.1.

4Desmet and Wacziarg (2021), Knittel and Ozaltun (2020), and Kuchler et al. (2022) examine spatial variation in
COVID cases and/or deaths in the United States without employing the framework of an SIRD model.
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2.2 Social Distancing Data

The data on social distancing behaviors come from SafeGraph, a data company that aggregates

anonymized location data from about 45 million mobile devices and numerous applications in

order to provide insights about physical points of interest (POIs). POIs include restaurants, coffee

shops, grocery stores, retail outlets, hospitals, and many other business establishments. For each

POI, SafeGraph reports the daily number of unique device visits along with information on the

POI’s industry and location.5 For each CSA, we construct the total number of visits to POIs in that

CSA for a given day.

2.3 Economic Data

Our analysis uses economic data from two sources. We incorporate spending on approximately 10

million debit cards in data from Facteus, a financial data provider that directly partners with banks.

This sample consists of traditional debit cards issued by banks, general purpose debit cards issued

by merchants, payroll cards issued by employers, and government alimony disbursement cards.

Lower- and middle-income individuals are represented more heavily in this data than in the US

population. We construct the total number of transactions and dollar amount spent by cards from

a given home CSA on a given day.6

We also source information on employment from Homebase, a company providing scheduling

and time tracking software to over 60,000 small businesses.7 For each day, we analyze the number

of work hours and individuals employed by Homebase partner firms in a given CSA.

2.4 Health Data

We pull case and death counts by day at the county level from a continually-updated repository

by the New York Times that aggregates reports from state and local health agencies. For all dates

up to the first available data, we assume no cases nor deaths. We collect state-level testing and

hospitalization data from the Covid Tracking Project.

5See https://web.archive.org/web/20201024234927/https://docs.safegraph.com/docs/weekly-patterns for additional
information on the data’s construction.

6To protect privacy, Facteus injects a small amount of mathematical noise into key record attributes. This has
very minimal impact on aggregate data. More information on this differential privacy procedure can be found at
https://web.archive.org/web/20210519180241/https://www.facteus.com/products/data-products/.

7Additional information regarding Homebase’s data can be found at https://joinhomebase.com/data/.
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2.5 Demographic Data

We supplement the policy and outcome data with data on CSA characteristics. For our measure

of partisanship, we use the Republican vote share in the 2016 presidential election (MIT Election

Data and Science Lab 2018). Following Allcott et al. (2020), we use the SafeGraph OpenCensus

data to assign demographic variables such as race, income, occupation, and commuting to the

various geographies analyzed. The SafeGraph OpenCensus data is derived from the 2016 5-year

ACS at the census block group level. We add the urban share of the population from the 2010

Census. We also use average seasonal temperatures by geography from Wu et al. (2020), which is

ultimately sourced from gridMET (Abatzoglou 2013). To characterize potential global migration

flows for transmission, we use flight data from the OpenSky Network (Schäfer et al. 2014; Olive

2019).

3 Effects on Social Distancing and Economic Outcomes

Our main results are at the Combined Statistical Area (CSA) by order date level (i.e., we group

counties within a CSA who received a stay-at-home order on the same day together) using data

from February 1, 2020 to April 30, 2020.8 We call our unit of observation a “CSA” for simplicity.

To estimate the causal effect of these stay-at-home orders, we estimate the following event-study

specification

Yit = µi +δt +
k=21

∑
k=−21,k ̸=−1

ωk1{t−Ti=k}+ εit (1)

where Yit is the outcome of interest in CSA i during time t, µi is a CSA fixed effect, δt is a date

fixed effect, and 1{t−Ti=k} is an indicator for the days relative to the first stay-at-home order Ti.9

Standard errors are clustered at the CSA level irrespective of order timing. Earlier and later time

periods are pooled in the k =−21 and k = 21 time indicators respectively.

Panels A–C of Figure 1 show clear effects of stay-at-home orders on social distancing and

economic outcomes. Panel A shows that a stay-at-home order decreased POI visits by 17.8 percent

(se = 1.3) by the day after the order’s effective start date (k = 1). This decrease persisted and

was relatively stable throughout the window of analysis. Panel B estimates that a stay-at-home

order decreased consumer debit spending (in total $) by 7.1 percent (se = 0.9) by the day after an

8See Appendix A.1 for detail regarding CSAs and the benefits of conducting our analysis at the CSA level.
9For CSAs without a stay-at-home order in our sample, 1{t−Ti=k} is always set to zero.
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order’s effective start date. Panel C estimates a 12.3 percent (se = 1.5) reduction in the number of

employees working in our Homebase sample on the day following an order’s implementation.

In Appendix Figure A4 Panel A, we find no evidence of heterogeneous policy effects on mobil-

ity by implementation date. In Panel B, we also find similar policy effects on mobility in majority

Democrat vs. majority Republican CSAs. Appendix Figure A5 analyzes the effects of manda-

tory business closure orders, which induced less negative mobility and spending responses than

stay-at-home orders but which caused a comparable reduction in employment.

4 Effects on Health Outcomes

4.1 SIRD Model

We start with a discrete-time SIRD model (Kermack and McKendrick 1927), suppressing notation

for different geographies i. In outlining this model, we make the assumption that there are no

health spillovers across geographies. Furthermore, we abstract from issues around testing and the

endogeneity of stay-at-home order timing.

The population is defined by

St + It +Rt +Dt = N (2)

where St , It , Rt , and Dt are the number of susceptible, infected, recovered, and deceased individuals

at time t. Dynamics in the SIRD model are defined by the transition probabilities between states.

The laws of motion are given by:

St+1 −St =−βtSt
It
N

(3)

It+1 − It = βtSt
It
N
− γIt (4)

Rt+1 −Rt = (1−κ)γIt (5)

Dt+1 −Dt = κγIt (6)

where βt is the contact rate that governs the speed at which new infections propagate, γ is the rate

at which infected individuals recover, and κ is the proportion of recovered individuals that die. We
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treat the recovery rate γ and death rate κ as fixed parameters during the time period we analyze.

Defining the total number of cases to be Ct = It +Rt +Dt and combining equations (4), (5),

and (6), we get that new cases evolve as

Ct+1 −Ct = βtSt
It
N

(7)

We make the simplifying assumption that St ≈ Nt so that we can treat the ratio St
Nt

= 1. As of May

1, less than 0.5 percent of the US population had a confirmed case on or before this date—making

this approximation reasonable—though the true case count may have been greater. This allows us

to replace equations (3) and (4) with

Ct+1 −Ct = βtIt . (8)

Furthermore, we can write

It = (Ct −Ct−1)+(1− γ)It−1. (9)

Given initial conditions C0, I0, the contact rate βt , and the recovery rate γ , equations (8) and (9)

define the dynamics of cases over time.

4.2 Estimation Framework

A key parameter of interest for policymakers is the contact rate βt . As social distancing increases,

the contact rate decreases—yielding fewer new cases. The contact rate βt is proportionally related

to the reproduction number R0t as R0t = βt/γ . A proportional effect on the contact rate βt will

have the same proportional effect on the reproduction number R0t .

We suggest it is natural to think of stay-at-home orders as a proportional effect (τ) on the

contact rate that would occur in the absence of policy interventions (β̃t). That is, the contact rate is

βt = β̃t(1+ τ) under a stay-at-home order as opposed to β̃t .

Applying this substitution and taking logs of equation (8), we get

log(Ct+1 −Ct) = log(It)+ log(β̃t)+ log(1+ τ1{t≥Ti}).

where 1{t≥Ti} denotes an indicator for being under a stay-at-home order. We then use an event-
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study framework to estimate the impact of treatment

log(Ci,t+1 −Cit) = α log(Iit)+δt +ξit +
k=21

∑
k=−14,k ̸=−1

ωk1{t−Ti=k}+ εit , (10)

where, relative to equation (1), ξit is an indicator for the non-binned event-study window.10

The ωk coefficients can be interpreted as estimates of τ while δt and ξit control for variation in

βt over time unrelated to the policy. Even though It is not directly observed, given initial conditions

C0 = I0 and γ , no additional data is required to construct the time-path for It beyond the growth in

cases. Below, we use values for γ suggested by the epidemiology literature and examine robustness

to alternative values. Note that one test of the model and its assumptions is whether α̂ = 1.

In Appendix Figure A6, we show that this estimator performs well when estimated on data

simulated from an SIRD model, and contrast this with the poor performance of other specifications

used in the literature.

4.3 Results

A key input into the estimation process is γ which is the inverse of the average infectious period

for COVID-19. We report estimates using a range of values for γ. On one extreme, we set γ = 0

which implies Iit = Cit or an infinite infectious period. On the other extreme, we set γ = 1 which

implies an average infectious period of 1 day. Early indications in the literature suggested an

infectious period of 4.4 to 7.5 days (Anderson et al. 2020). As of May 8, 2020, the CDC website

recommended home isolation until at least 10 days have passed since symptoms first appeared,

whereas the UK NHS recommended a minimum of 7 days.11 We view the range of γ = 1/3 (an

infectious period of three days on average) and γ = 1/12 (an infectious period of twelve days on

average) as limits to the range of likely values.

Table 1 reports our estimates using case data and stay-at-home orders. To reduce instances

where log(Ci,t+1−Cit) is undefined, we group counties by the interaction between their cumulative

statistical area and the timing of their stay-at-home order.12 We restrict attention to CSA-days with

10The event-study window indicator is required for normalization when geography fixed effects are excluded. We
exclude geography fixed effects because they bias estimates in our simulations (see Appendix Figure A7).

11https://web.archive.org/web/20200508003242/https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/steps-
when-sick.html and https://web.archive.org/web/20200522075042/https://www.nhs.uk/conditions/coronavirus-
covid-19/what-to-do-if-you-or-someone-you-live-with-has-coronavirus-symptoms/staying-at-home-if-you-or-
someone-you-live-with-has-coronavirus-symptoms/

12For simplicity, we subsequently refer to these CSA-timing groups as CSAs.
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at least 10 cases, the set of CSAs to either never treated CSAs or CSAs which are observed for at

least 8 days before and 20 days after the order, and the time period prior to May 1, 2020. Because

of the imprecision of the estimates, we estimate an aggregated event study specification (see table

notes). In general, γ is positively correlated with the estimated treatment effects of stay-at-home

orders on case prevalence.

Using likely values of γ , we find a negative estimated effect of stay-at-home orders on case

prevalence though these estimated effects have wide confidence intervals. Setting γ = 1/6, which

implies an average infectious period of 6 days, our baseline estimates suggest that stay-at-home

orders decreased the contact rate βt (i.e., the rate of new cases) by 9.1 percent (se = 4.8) relative

to their pre-order levels. Consistent with the data coming from an SIRD data generating process,

estimates for α are close to 1.

Panels D and E of Figure 1 report the full event-study plot for γ = 0 which sets It =Ct , along

with our preferred value of γ = 1/6. Appendix Figure A9 reports the full event studies for the

other values of γ.

5 Explaining Variation in Outcomes

5.1 Temporal Variation

In this section, we compute the share of the overall change in each outcome that is attributable to

stay-at-home and business closure orders. Secular trends in the outcomes were prominent over our

time period as individuals made voluntary behavioral changes (e.g., Appendix Figure A2).

To examine the share of aggregate changes explained by policy, we first compute the average

total percent reduction in the outcome as

Total∆ =
YT −Y0

Y0
(11)

where Yt is the weighted average of the level of the outcome in week t taken over geographies that

enacted the corresponding order during our time period. t = 0 is the first week of February, and

t = T is the third week of April. We average across days in the week when computing Yt to remove

any day-of-week effects.13

13Most CSAs did not have any cases in early February, so the pre-period levels cannot be estimated from the data
when examining the overall change in the contact rate βt . Since we must choose γ for each specification and the
reproduction number R0 is βt/γ , we can recover βt in the pre-period by specifying R0. Anderson et al. (2020) and
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Next, we compute the average policy-induced change relative to baseline levels as

Policy∆ =
1
N ∑

i
wi

ωk ×YT (i)

Y0
(12)

where ωk is the estimated treatment effect from Sections 3 and 4, wi are geography population

weights that sum to N, and T (i) is the period prior to the order’s implementation for geography

i. We account for uncertainty induced by the estimation of ωk in the standard errors, and treat

the values of Yt as given. We set k = 1 in our baseline specification and examine robustness to

alternative assumptions.

Figure 2 presents the ratio Policy∆/Total∆ for our social distancing, employment, and health

outcomes.14 We compute this estimate separately for stay-at-home orders and mandatory business

closure orders. Appendix Table A3 reports Total∆ and Policy∆ individually for the stay-at-home

orders, the business closure orders, and the simultaneous implementation of both orders.

We estimate that stay-at-home orders explain 16.2 percent of the change in POI visits, 15.6

percent of the change in total wages, 16.0 percent of the change in total employment, and 13.1

percent of the change in the contact rate βt when setting γ = 1/6 and R0 = 3.0. Overall, while

stay-at-home orders only explain a small proportion of the overall changes in social distancing and

case growth, they do not appear inefficient. Stay-at-home orders have a wage cost per unit of social

distancing that is 0.96 times as large as the average cost across voluntary behavioral changes and

other government orders and has a relative employment cost that is 0.99 times as large.15

In contrast to the stay-at-home orders, the employment cost per unit of social distancing for

business closures is relatively high. Our estimates suggest that business closure orders have a wage

cost per unit of social distancing that is 2.25 times larger than the average cost across voluntary

behavioral changes and other government orders and has a relative employment cost that is 1.91

times greater.16

Appendix Table A4 considers alternative estimators and provides qualitatively similar conclu-

D’Arienzo and Coniglio (2020) provide an overview of estimates of the initial reproduction rate R0, ranging from
2.5 to 3.5. Our preferred reproduction rate is R0 = 3.0. We then compute YT and YT (i) using equation (8) and the
assumed γ value; we use the assumed R0 when (8) is undefined in our data.

14Debit card transactions and total spending, according to the Facteus data, did not have a similarly strong decrease
between February and April. As a result, the decomposition of this small reduction (or increase in the case of total
spending) into a voluntary and mandatory portion is more difficult to interpret. We note that Farrell et al. (2020) find
a decrease in consumer spending when using data sources other than Facteus’ debit card panel.

15That is, .156
.162/

1−.156
1−.162 = 0.96 and .160

.162/
1−.160
1−.162 = 0.99.

16That is, .182
.090/

1−.182
1−.090 = 2.25 and .159

.090/
1−.159
1−.090 = 1.91.
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sions.

5.2 Geographic Variation

We next examine factors that explain the geographic variation in health outcomes.

To formalize the comparison across CSAs, we extend our parameterization of the contact rate

βit as a function of social distancing behaviors along with date and CSA fixed effects

log(βit) = Λ0∆ log(POIit)+θi +ρt +νit (13)

where ∆ log(POIit) is the change in the log of POI visits between March 1, 2020 and t, θi are CSA

fixed effects, ρt are date fixed effects, and νit are residuals unobserved by the econometrician. We

use our constructed series for Iit and the case growth Ci,t+1 −Cit to define βit as in equation (8)

assuming γ = 1/6. Note that we can use the ratio of the treatment effects of stay-at-home orders

on social distancing behaviors in Section 3 and on the contact rate from Table 1 to provide a causal

estimate Λ̂0 for the change in the contact rate per change in social distancing. Constraining Λ0 to

be the estimated ratio from our event-study specifications, we estimate equation (13) via a fixed

effects estimator.17

Table 2 reports the average difference in log contact rates log(βit) across various groups of

CSAs with high and low average case growth. To understand the role of social distancing and

policy in explaining differences between these groups, we use equation (13) and our previous

event-study estimates to obtain the predicted log contact rates if (i) stay-at-home policies had been

equated across all CSAs and (ii) if changes in social distancing had been equated across all CSAs.

Our estimates suggest that little to none of the average geographic variation in log contact rates

were explained by differences in social distancing behaviors or policy. The timing of virus onset,

accounted for by ρt , also did little to explain these average differences.18

These results suggest the vast majority of differences across CSAs were driven by the estimated

fixed effects θi.19 We next turn to examining which observable factors help explain the variation

17To implement the regression constraint and avoid taking the log of zero, we set βik =
1

1,000,000 when βik <
1

1,000,000
and we estimate

log(βit)− Λ̂0∆ log(POIit) = θi +ρt +νit

where we use the same estimating sample as in Section 4 restricted to the period between March 15 and April 30,
2020, and we set Λ̂0 =

.091

.178 = .51. We do not use population weights.
18Appendix Table A5 reports the share of the cross-CSA variance in log contact rates log(βit) explained by each set

of covariates and provides similar conclusions as the additive decomposition in Table 2.
19Appendix Table A1 reports summary statistics for all CSAs, CSAs with above median average contact rates, and
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in the estimated CSA fixed effects.

To examine the determinants of these fixed differences across CSAs, we first perform the de-

scriptive exercise of regressing the CSA fixed effects θi on CSA-level covariates using OLS. Panel

A of Figure 3 shows the standardized coefficient estimates from univariate regressions. Panel B of

Figure 3 shows the corresponding coefficients when controlling for log population. While many

variables were significant predictors in the univariate regressions, only racial composition (share

Black, Asian, and Other) and partisanship (Republican vote share) were significant predictors after

controlling for log population.

Next, we formalize the prediction exercise using the full set of covariates and lasso to select

and penalize coefficients.20 We choose the lasso penalty to maximize out-of-sample fit in a 10-fold

cross-validation without using population weights. Lasso selects variables that cover population

(log population and log population density), racial composition (share Black and Other), and parti-

sanship (Republican vote share).21 Appendix Figure A10 shows the fit of the predicted fixed effects

from the lasso regression and the estimated fixed effects θ̂i. Overall, the model performs well—

accurately predicting the contact rate fixed effect for NYC and other major CSAs but performing

less well on smaller CSAs.

Using the lasso estimates, we return to the additive decomposition in Table 2. We recompute

the log contact rates after equating various subsets of covariates using the estimated coefficients

from our lasso model. Overall, the covariates in our lasso model explained 54.8 percent of the

difference between CSAs with above-median case growth and CSAs with below-median case

growth. The population variables, log population and log population density, were the primary

predictors—explaining 48.2 percent of the above-below median difference in CSAs by themselves

with partisanship explaining smaller shares.

These results suggest fixed differences across locations played a larger role in explaining dif-

ferential case growth early on in the pandemic than policy or observed social distancing behaviors.

Predictors and drivers of temporal or geographic variation later in the pandemic may have been

different. The S = N assumption was also less tenable during later periods in the pandemic as the

recovered population grew—thus, complicating an analysis of this later period.

CSAs with below median average contact rates; and provides analogous conclusions.
20We exclude the log number of tests as of April 30th from the lasso exercise for endogeneity reasons.
21This analysis of the strongest predictors of differences in contact rates across geographies might help to identify

the most critical characteristics to incorporate into heterogeneous SIR models (see Ellison 2024 for detail regarding
these models).
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5.3 Counterfactuals

Lastly, we conduct several counterfactual exercises. Our exercises take the form of constructing

alternate sequences of contact rates {βik}t
k=0 and using the SIRD model outlined above to compute

counterfactual cases given observed initial conditions I0 =C0.22

In Panel C of Figure 2, we compute various counterfactual contact rate sequences {β c
ik}

t
k=0 and

examine how these alternative sequences would have shaped the evolution of total cases in our

sample. Assuming a proportional impact of stay-at-home orders on social distancing behaviors as

estimated in Section 3, a uniform stay-at-home order implemented on March 17 (when the San

Francisco Bay Area implemented their stay-at-home order) would have resulted in 154,000 fewer

cases by April 30th, or a 19.5 percent reduction in cases.23 If, instead, we assume that stay-at-home

orders caused social distancing behaviors to fall to a fixed level at 35 percent of baseline levels,

a uniform stay-at-home order implemented on March 17 would have resulted in 494,000 fewer

cases, or a 62.5 percent reduction in cases. If all CSAs followed the social distancing behaviors of

the counties in the San Francisco Bay Area that were the first to initiate stay-at-home orders, there

would have been 349,000 fewer cases in our sample, or a 44.1 percent reduction. Lastly, removing

the proportional effect of all policy would have resulted in 494,000 more cases, or a 62.4 percent

increase in cases.

While policy explains a small proportion of the temporal or geographic variation in case

growth, policy still has led to a non-trivial reduction in cases over time. As of September 4,

2020, the observed case fatality rate in the United States was 3 percent.24 Based on this observed

case fatality rate, the stay-at-home policies saved 14,800 lives while a further 10,500 lives could

have been saved if all CSAs followed the social distancing behavior of the counties in the San

Francisco Bay Area that were the first to initiate stay-at-home orders during the initial period of

the pandemic.

This counterfactual analysis comes with three important caveats. First, we have assumed that

there were no spillover effects from stay-at-home orders to geographies outside of the implement-

ing CSA, as we do not have information on the matrix of potential cross-CSA spillovers. While this

limitation is mitigated by our use of CSAs (which combine areas with significant cross-geography

employment), if stay-at-home orders reduced contact rates in other geographies, then our counter-

22We restrict βik ≥ 1
1,000,000 .

23To implement, we counterfactually reduce the log of POI visits by .178 after March 17 for CSAs not under an order
at that time.

24See https://coronavirus.jhu.edu/data/mortality accessed on September 4, 2020.
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factuals are likely to underestimate the impacts of counterfactual policies. A second key limitation

of our analysis is that the wide confidence intervals in our estimated impacts on health outcomes

(see Section 4) similarly lead to significant imprecision in our health counterfactuals. Finally, our

analysis assumes that stay-at-home orders cause a proportional reduction in the log of POI visits

that is uniform across geographies and time periods. While Appendix Figure A4 Panel A provides

empirical support for the assumption of uniform effects across different implementation dates dur-

ing this period, it is plausible that effects may be heterogeneous across geographies. The existing

literature provides mixes evidence regarding potential heterogeneity. Painter and Qui (2021) esti-

mate that stay-at-home orders have larger effects on mobility in Democratic counties (which were

more likely to implement these orders) than in Republican counties. If observed stay-at-home or-

ders are positively selected on their potentially heterogeneous treatment effects, this would lead our

counterfactuals to overestimate magnitudes from implementing these policies in geographies that

did not in fact issue such orders.25 In contrast and consistent with our homogeneity assumption,

Alexander and Karger (2023) estimate fairly uniform responses to stay-at home orders across the

country (including by county-level political leanings, and particularly after controlling for differ-

ences in the timing of stay-at-home orders). In Appendix Figure A4 Panel B, we estimate similar

impacts on mobility in majority Democrat vs. majority Republican CSAs.26

6 Conclusion

We use event studies and a model-driven regression framework to provide new decompositions on

the role of policy in driving the spatial and temporal variation in case transmission during the early

months of the COVID-19 pandemic. We find that policy was responsible for roughly 13 percent

of the change in virus contact rates between early March and mid-April 2020.27 Moreover, policy

explained little-to-none of the differences in average contact rates between CSAs with high- and

low-contact rates; in other words, policy and social distancing choices were not the primary reason

that areas like New York City experienced relatively severe outbreaks during the early pandemic

period. Rather, the most important predictors of which cities were hardest hit by the pandemic

25We thank an anonymous referee for contributing this point and suggesting heterogeneity tests.
26Estimated treatment effect magnitudes are slightly larger in majority Democrat CSAs, but this difference is not

statistically significant at standard significance levels for the day following the implementation of the stay-at-home
order.

27This finding is consistent with a growing consensus that most social distancing during this time period was voluntary
rather than policy-driven (e.g., Goolsbee and Syverson 2021), and further extends this analysis to quantify impacts
on subsequent health outcomes.
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were exogenous characteristics such as population and density.

These results inform the debate about the role policy played in the initial months of the COVID

pandemic. While our results suggest that policy explained a small proportion of the overall spatial

and temporal variation, this does not mean that (a) policy was inefficient or (b) policy was not

important. We find evidence that policy was no less costly in the short-run than voluntary social

distancing behaviors. Additionally, our counterfactual estimates suggest a uniform stay-at-home

policy implemented on March 17th would have resulted in a 20 percent reduction in cases by April

30th.

The empirical strategy that we have developed can similarly be used to study potential future

pandemics, as researchers can use this methodology to rapidly identify the causal effects of policy

and voluntary responses, and to analyze the drivers of initial outbreaks.
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Figure 1: Effect of Stay-at-Home Orders

Panel A: Effect on Mobility
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Panel B: Effect on Consumer Spending
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Panel C: Effect on Employment
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Panel D: Effect on Log New Cases, Model Free
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Panel E: Effect on Log Contact Rate, γ = 1/6
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Note: Figure plots estimated treatment effects ωk of stay-at-home orders on different outcomes, using the
event-study specification at the CSA-day level outlined in equation (1) for the mobility and economic out-
comes and equation (14) for the health outcomes. Panel A shows the effect on mobility, using the log of
total POI visits in the SafeGraph data. Panel B shows the effect on consumer spending, using the log of total
spending in Facteus’ debit card sample. Panel C shows the effect on employment, using the log number of
individuals with positive work hours from the Homebase sample. Panel D examines log new cases as the
outcome and sets γ = 0 which implies log(Iit) = log(Cit). Panel E is the same as Panel D, except that it sets
γ = 1/6. All regressions include date fixed effects δt . Panels A-C include CSA fixed effects µi; Panels D-E
include the event window indicator ξit . CSAs are weighted by population in the regression. Standard errors
are clustered at the CSA level irrespective of order timing.
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Figure 2: Temporal Variation Explained by Policy

Panel A: Share of Temporal Variation in Social Distancing and Employment Outcomes
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Panel B: Share of Temporal Variation in Contact Rate βt
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Note: Figure plots the share of the total change in each outcome that is attributable to a given policy Policy∆/Total∆ following Section 5.1.
Panel A reports estimates using stay-at-home orders and business closure orders for POI visits from SafeGraph, total wages from Homebase, and
employment from Homebase. For each policy treatment, we restrict attention to the CSAs treated by the given policy. Panel B reports estimates of
the policy-induced change in the contact rate βt from stay-at-home orders, varying the assumed basic reproduction number R0. In both panels, the
bars depict 95 percent confidence intervals. See Table A3 for additional details on Panels A and B. Panel C plots observed and counterfactual cases
following the methodology outlined in Section 5.3 for our sample of cumulative statistical areas (CSAs) using γ = 1/6. Panel C reports the observed
number of cases along with the estimated number of cases if a uniform stay-at-home order was implemented on March 17 with proportional effect
on social distancing behaviors, a uniform stay-at-home order was implemented on March 17 that caused social distancing behaviors to fall to a
fixed level of 35 percent of March 1 levels, and the estimated number of cases if all areas followed the same social distancing behavior as the San
Francisco Bay Area (defined to be the counties in the San Francisco CSA that were first to implement a stay-at-home order).
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Figure 3: Determinants of Geographic Variation in Log Contact Rates

Panel A: Univariate Regression of θ̂i on Covariates
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Panel B: Controlling for Log Population
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Note: Figure plots the coefficients of regressing the CSA log contact rate fixed effect estimates θ̂i from
equation (13) on CSA-level determinants. The θ̂i and all covariates have been standardized to have a mean
0 and a standard deviation of 1. Panel A plots the standardized coefficients and 95 percent confidence
intervals from univariate regressions. Panel B repeats Panel A but the regressions also control for the log
of population. Population weights are not used. Robust standard errors are used to compute the confidence
intervals.
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Table 1: Estimated Effects of Stay-at-Home Orders on Contact Rate

(1) (2) (3) (4) (5)
γ = 0 γ = 1/12 γ = 1/9 γ = 1/6 γ = 1/3

Post-order -0.203 -0.139 -0.121 -0.091 -0.023
(0.086) (0.060) (0.055) (0.048) (0.045)

log(Iit) 1.053 1.048 1.044 1.037 1.013
(0.027) (0.019) (0.017) (0.012) (0.006)

Clusters 76 76 76 76 76
Obs. 5240 5240 5240 5240 5240

Note: Table shows estimated coefficients from estimating an aggregated version of the event study in equa-
tion (1):

log(Ci,t+1 −Cit) = α log(Iit)+δt +ω0Eit +ω1Postit +ξ
0
it +ξ

1
it + εit (14)

where Eit = 1{−9<t−Ti<21}, Postit = 1{−1<t−Ti<21}, ξ 0
it = 1{t−Ti<−8}, and ξ 1

it = 1{t−Ti>20}. ‘Post-order’ reports
ω̂1, and ‘log(Iit)’ reports α̂ . Each column reports estimates for a different value of γ as reported in the header.
Observations are weighted by population. Standard errors clustered by CSA are reported in parenetheses.
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Table 2: Additive Decomposition for Geographic Differences in Log Contact Rates

Above/Below Med. Top/Bot. Quart. Top/Bot. Dec.
Overall Difference 1.228 2.171 3.565

Share of difference explained by:
Social Distancing -0.009 -0.010 -0.023

Policy -0.006 -0.007 -0.007
Timing of Virus -0.000 -0.003 -0.003
Observed Covariates 0.548 0.508 0.424

Population 0.482 0.423 0.336
Climate 0.000 0.000 0.000
Transport 0.000 0.000 0.000
Race -0.036 -0.015 -0.023
Partisanship 0.103 0.100 0.110
College Degrees 0.000 0.000 0.000
Age Demographics 0.000 0.000 0.000

Note: Table reports the difference in the average log contact rate log(βit) between March 15 and April 30,
2020 for each group of CSAs. It also reports the counterfactual share of the overall difference explained by
each set of determinants as outlined in Section 5.2. The following sets of covariates were considered for
possible inclusion, but only bolded variables were selected by a Lasso model and included in this variance
decomposition:

• Population: Log Population Density; Log Population; Share Urban
• Climate: Average Summer Temperature; Average Winter Temperature
• Transport: Share Commute Auto; Log International Flights
• Race: Share Black; Share White; Share Asian; Share Other Race; Share Hispanic
• Partisanship: Republican Vote Share
• College Degrees: Share with Bachelor’s or More
• Age Demographics: Share Age ≥ 65; Share < 18
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A Appendix

See the replication code for exact details on data construction and estimation.

A.1 Data Construction Procedures

We construct the datasets used in our analysis as follows.

1. We begin by matching SafeGraph POIs to the counties in which they are located. We use
latitude and longitude from SafeGraph’s August 2020 Core POI dataset, along with the 2010
TIGER county shapefile.28 We successfully assign 99.9 percent of the POIs to a county.

2. We then merge the POI-county mapping from (1) onto SafeGraph’s Patterns data using the
safegraph-place-id variable. We sum visits by county for a given day, aggregating across
POIs. Our SafeGraph series ranges from January 1, 2020 to August 30, 2020.

3. We then merge onto the output from (2) a dataset of county-level demographic information
constructed as follows. We use the Open Census data from SafeGraph, aggregating up the
data given at the census block group level to the county level. We combine this with data on
county 2016 Presidential votes shares (MIT Election Data and Science Lab 2018). We define
the Republican vote share to be the share of votes received by the Republican candidate over
the sum of votes across all candidates. We exclude counties without valid vote data, which
drops Alaska and two additional counties (FIPS: 15005, 51515). We also merge on the
urban population share from the 2010 Census.29 We also use average seasonal temperatures
by geography from Wu et al. (2020), which is ultimately sourced from gridMET. Averages
for a given county and season are taken across the years 2010-2016.

4. We then merge onto the output from (3) the number of incoming international flights for each
US county from December 2019 to February 2020 made available by the OpenSky Network
(Schäfer et al. 2014; Olive 2019).

5. We then merge data on Covid-19 health outcomes onto the output from (4). We source
confirmed Covid-19 cases and deaths by county and day from The New York Times. We
assume zero cases and deaths for the observations not observed in The New York Times
data. We drop the four counties which overlap with Kansas City (MO), because The New
York Times lists these as geographic exceptions where it either does not assign cases to these
counties or excludes cases occurring within the city. For the five boroughs of New York City,

28Downloaded from https://www.census.gov/geo/maps-data/data/cbf/cbf counties.html on July 24, 2018.
29Downloaded from https://www.census.gov/programs-surveys/geography/technical-documentation/records-

layout/2010-urban-lists-record-layout.html on June 25, 2020.
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we assign cases and deaths based on their population share. We also merge data on testing
and hospitalizations from the Covid Tracking Project by state and day.

6. We then merge a dataset of county-level shelter-in-place and business closure order start
dates onto the output from (5) and construct an indicator for whether a county had been
subject to a shelter-in-place and/or business closure order by a given date. It is ultimately
sourced from The New York Times, Keystone Strategy, a crowdsourcing effort from Stanford
University and the University of Virginia, and Hikma Health. The New York Times has
been tracking “shelter-in-place”, “stay-at-home”, “healthy-at-home”, etc. policies enacted
at the city, county and state level (Mervosh et al. 2020a). We use the dates reported by
the NYT for our stay-at-home policy. The relevant NPIs from Keystone’s data are shelter-
in-place (SIP) and closure of public venues (CPV) policies. Keystone considers an “order
indicating that people should shelter in their homes except for essential reasons” as a SIP
intervention and a “government order closing gathering venues for in-person service” as a
CPV intervention. We will use Keystone’s SIP and CPV dates for our stay-at-home and
business closure policies respectively. The crowdsourced data collected by a group from
Stanford and University of Virginia solicits policy and personal information from survey
participants in an online form. We use the “lockdown” and “business closed” dates for
counties from this data. Hikma Health, a non-profit working on data systems and analysis
for healthcare providers, has carried out their own crowdsourcing effort to document NPIs.
We use the county “shelter date” and “work date” from Hikma Health in our construction
of stay-at-home and business closure policies respectively. Given that none of the sources
have entirely overlapping policy data, we define both our stay-at-home and business closure
policies by sequentially assigning enforcement dates when data is available in the order:
NYT, Keystone, Stanford/Virginia crowdsource, and Hikma Health. Once a state enacts a
policy, the counties inherit the policy of the state. We then merge on a dataset of reopening
dates at the state level collected by the NYT (Mervosh et al. 2020b) and curated by Rearc.

7. We then merge debit card transactions and spending totals from Facteus onto the output from
(6). Prior to this merge, Facteus data is aggregated from the zip code to the county level using
a 5-digit zip code to county crosswalk.30 Facteus data ranges from Jan 1, 2020 to August 27,
2020, with missing data on August 7, 2020.

8. We then merge employment data from Homebase onto the output from (7). Homebase data is
aggregated to the county-day level prior to this merge. This step completes the construction
of the dataset used in our county-level analysis. Homebase data ranges from Jan 1, 2020 to

30Downloaded from HUD (https://www.huduser.gov/portal/datasets/usps crosswalk.html) on April 12, 2020
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August 31, 2020.

9. For analysis at the level of a CSA, order date, and day, we then aggregate the output from (8)
to this level. We use a county to CSA crosswalk.31 We sum countable variables such as POI
visits or Covid-19 cases. For other variables, we take a population-weighted average across
counties in a CSA-day with the same social distancing policy start date. In our CSA-level
analysis, we exclude counties not assigned to a CSA.

CSAs consist of groups of counties that have significant commuting ties across counties within the
group. More precisely (per https://www.census.gov/programs-surveys/metro-micro/about/glossary.html),
each CSA consists of two or more adjacent core based statistical areas (CBSAs) that have an em-
ployment interchange measure of 15 or more. CBSAs in turn consist of the county or counties
(or equivalent entities) associated with at least one core (urban area) of at least 10,000 population,
plus adjacent counties having a high degree of social and economic integration with the core as
measured through commuting ties. Employment interchange is defined as the sum of the percent-
age of workers living in the smaller entity who work in the larger entity and the percentage of
employment in the smaller entity that is accounted for by workers who reside in the larger en-
tity. We use CSAs as our unit of analysis in order to partially capture policy and health spillovers
across geographies that have significant commuting ties, to avoid instances in which the log of
new COVID-19 cases is undefined at the county level, and to focus our analysis on metropolitan
and micropolitan areas (excluding particularly rural areas that likely had more limited COVID-19
testing capacity). This differs from the focus on county-level analysis in much of the existing
literature, with Vissat et al. (2022) being one exception that also analyzes variation across CSAs
(without analyzing causal effects or incorporating data on policy and social distancing). 80 per-
cent of the US population resided within CSAs as of April 1, 2020, per data from the US Census
(https://www2.census.gov/programs-surveys/popest/tables/2020-2023/metro/totals/csa-est2023-pop.xlsx,
downloaded on August 20, 2024).

A.2 SIRD Simulations and Estimation Details

A.2.1 Simulation

To generate data from an SIRD data generating process, we assume a death rate κ = .008 and an
average infectious period of 10 days (γ = .1). We assume βit evolves as βit = γ(Ri0eλit +R1(1−
eλit))× (1 + τTit) where Ri0 is drawn from a normal distribution with mean 2.4 and standard
deviation 0.1, R1 = .95, τ is either 0 or -0.1 depending on the simulation, Tit is drawn from a

31Downloaded on May 29, 2020 from the NBER (http://data.nber.org/cbsa-csa-fips-county-
crosswalk/cbsa2fipsxw.csv), which uses delineation files originally sourced from the Census
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binomial distribution with size 150 and probability 4/15, and λ is drawn from a normal distribu-
tion with mean −0.08 and standard deviation 0.01. The exponential decay process for βt follows
Fernández-Villaverde and Jones (2022). The initial share of the population infected is drawn from
an exponential distribution with rate 10,000. The size of the population is drawn from an expo-
nential distribution with rate 1/100,000.

We then follow the laws of motion outlined in the main text, updating βt each period. Note
that in constructing the simulations, we do not use the S/N ≈ 1 assumption but simulate data
from the complete model. We simulate data for 200 geographies with 150 time periods. We then
follow the estimation process outlined in the main text and assume that γ is the true value used in
simulations. We drop the event window indicator in equation (14) when including geography fixed
effects. We also show robustness to incorrectly specifying τ as half its true value and twice its true
value.

A.2.2 Dave et al. (2021)

Dave et al. (2021; Figure 4) use an event-study specification with the log of confirmed cases on
the left-hand side and geography-specific linear time trends, e.g.,

log(Cit) = µi +µi × t +δt +
k=21

∑
k=−7,k ̸=−1

ωk1{t−Ti=k}+ εit (15)

where log(Cit) is the log of confirmed cases in geography i during time t, µi is a geography fixed
effect, δt is a date fixed effect, 1{t−Ti=k} is an indicator for the days relative to the first stay-at-home
order Ti, and µi × t is a geography-specific linear time trend.32 Following Dave et al. (2021), we
exclude data after April 20, 2020.

A.2.3 Estimation Details

To implement our SIRD estimator, we proceed as follows:

1. We assume zero cases in counties for which none have been reported, aggregate county data
to the CSA-order timing level (subsequently “CSA”), and constrain cumulative cases to be
non-decreasing at the CSA level. We then make the following restrictions:

(a) CSA-days with at least 10 cases,

(b) CSAs that either never receive a stay-at-home order or are observed at least 8 days prior
and 20 days after the implementation of the order, and

32In their event-study specification, Dave et al. (2021) aggregate multiple post-treatment periods into a single treatment
effect and include other control variables.
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(c) CSA-days between February 1, 2020 and April 30, 2020.

2. We set Ci0 to be the number of confirmed cases during the period in which at least 10 cases
are confirmed, and we define Ci0 = Ii0.

3. We then use equation (9) to define the full time path of Iit for each geography given γ .

4. We then estimate equation (14), using log(1
2 +Ct+1 −Ct) to avoid taking log of zero when

no new cases are observed.

A.2.4 Other Methods of Estimation in the Literature

Several previous attempts at estimating the effect of stay-at-home orders have not been model-
driven. For example, Dave et al. (2021) use the log of confirmed cases as the outcome in an event-
study framework with state-specific linear trends.33 These estimators can produce unexpected
results when the data comes from an SIRD data-generating process.

In Appendix Figure A8, we show that the Dave et al. (2021) estimator exhibits substantial
pretrends and fails to recover the estimated treatment effect when estimated on simulated data. We
also apply the estimator to real, state-level data as in Dave et al (2021). We qualitatively replicate
their results when using the 7-day pre-period event window. When using a more complete 14-day
or 21-day pre-period event window, the estimator produces null results with substantial pretrends—
mirroring the estimates from this estimator when using data simulated from an SIRD model. To
gain intuition for the poor performance of these estimators, equation (8) implies log cases follow

log(Ci,t+1) = log(βitIit +Cit). (16)

Therefore, the ωk coefficients from an event study with log cases on the left-hand side are going to
pick up differential trends in a nonlinear function of βit , Iit , and Cit across treated and non-treated
units rather than differential trends in log(βit) alone.34

33Friedson et al. (2021) use a synthetic control estimator with log cases on the left-hand side to estimate the effect
of California’s stay-at-home order. Lin and Meissner (2020), Fowler et al. (2021), and Courtemanche et al. (2020)
use various difference-in-difference specifications with log(Ci,t+1)− log(Cit) on the left-hand side, which gives
log(Ci,t+1)− log(Cit) = log(βit Iit +Cit)− log(βi,t−1Ii,t−1+Ci,t−1). Lin and Meissner (2020) also perform a matching
exercise of counties across state borders. Given the nonlinear dynamics of the SIRD model, synthetic control or
matching estimates may perform better when the model structure is not accounted for parametrically.

34Note that even under the simplifying assumption that Cit = Iit (which implies γ = 0), rewriting equation (16) still
gives

log(Ci,t+1) = log(1+βit)+ log(Cit).
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Appendix Figure A1: Distribution of Timing of First Government Order
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Note: Figure shows the distribution of government order effective start dates over time and across counties.
Each bar represents the number of counties (y-axis) for which the first order of a given type went into effect
on the date specified (x-axis). Stay-at-home and business closing orders are shown in blue and orange bars
respectively. See Section 2.1 for detail on data sources and processing.
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Appendix Figure A2: Trends in Average Mobility and Health

Panel A: Mobility
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Panel B: Health
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Note: Figure reports trends in average mobility and health by county order timing and week. Panel A
plots the log of daily average POI visits, normalizing relative to the week starting January 29, 2020. Panel
B plots the log of daily new COVID-19 cases, normalized to the week starting March 25, 2020. In both
panels, averages are weighted by population and taken across counties and days prior to taking logs or
normalization. ‘Early Order’ indicates counties with a stay-at-home order on or before March 25, 2020.
‘Late Order’ indicates counties with a stay-at-home order after this point. ‘No Order‘ indicates counties
which did not issue a stay-at-home order during this sample period. The dashed vertical line indicates the
week starting March 25, 2020.
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Appendix Figure A3: Geographic Variation in Social Distancing and Public Policy

Panel A: % Change in SafeGraph Visits
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Note: This figure shows the U.S. geographic distribution of social distancing and public policy responses
during the early COVID-19 pandemic. Panel A shows for each county the percent change in aggregate visits
between the week beginning January 29, 2020 and the week beginning April 8, 2020. Blue shading denotes
a more negative percent change in visits during the latter week relative to the former. Red shading indicates
an increase or a smaller decrease in visits. These visits are sourced from SafeGraph’s mobile device location
data. Panel B shades U.S. counties by the effective start date for the earliest shelter-in-place order issued
(see Section 2.1 for sources). Blue shading indicates an earlier order, while red shading indicates that an
order was issued later or was never issued. 34



Appendix Figure A4: Heterogeneity in Effect of Stay-at-Home Orders on Social Distancing

Panel A: Vs. Order Date
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Note: Figure plots heterogeneity in estimated treatment effects across implementation dates or across ge-
ographies. Panel A plots estimated treatment effects ω1 from the event-study specification outlined in equa-
tion (1), run separately by date of the stay-at-home order, using the log of total POI visits in a CSA for a
given day. Each regression is run on a sample of CSAs that either had an order issued on the day of interest,
never had an order issued, or had an order issued later than April 6. As a result, each ω1 is estimated relative
to the set of CSAs that never had orders or had orders after April 6. The regressions include CSA fixed ef-
fects µi and date fixed effects δt . CSAs are weighted by population in the regression. Robust standard errors
are used for the line of best fit. Panel B follows Figure 1 Panel A in plotting estimated treatment effects
on mobility outcomes for all leads and lags, but does so separately for CSAs that consist of a majority of
Democrats (left) vs. a majority of Republicans (right).
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Appendix Figure A5: Effect of Mandatory Business Closure or Simultaneous Orders

Panel A: Effect on Mobility
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Panel B: Effect on Consumer Spending
Business Closure

-0.40

-0.20

0.00

0.20

0.40

C
oe

ffi
ci

en
t E

st
im

at
e

-21 -14 -7 0 7 14 21

Days Relative to Order

Combined Business Closure and Stay-at-Home

-0.40

-0.20

0.00

0.20

0.40
C

oe
ffi

ci
en

t E
st

im
at

e

-21 -14 -7 0 7 14 21

Days Relative to Order

Panel C: Effect on Employment
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Note: Figure plots estimated treatment effects ωk of policy orders on different outcomes, using the event-study speci-
fication outlined in equation (1) at the CSA-day level. ‘Business Closure’ subfigures analyze event studies of business
closure orders. ‘Combined Business Closure and Stay-at-Home’ restricts to CSAs that implemented their business
closure and stay-at home orders at the same time. Panel A shows the effect on mobility, using the log of total POI vis-
its in the SafeGraph data. Panel B shows the effect on consumer spending, using the log of total spending in Facteus’
debit card sample. Panel C shows the effect on employment, using the log number of individuals with positive work
hours from the Homebase sample. All regressions include CSA fixed effects µi and date fixed effects δt . CSAs are
weighted by population in the regression. Standard errors are clustered at the CSA level irrespective of order timing.
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Appendix Figure A6: Simulations

Panel A: Preferred Estimator
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Panel B: Preferred Estimator but not Controlling for log(Iit)
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Panel C: Log Cases Event Study with Linear Time Trends (Dave et al. 2021)
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Note: Figure plots estimated treatment effects ωk from the event-study specification outlined in equation
(14) using the data simulated from an SIRD model. The first column uses data simulated from an SIRD
model where the true treatment effect of the stay-at-home order is τ = 0. The second column uses data
simulated from an SIRD model where the true treatment effect of the stay-at-home order is τ =−.1. Panel
A is our preferred estimator. Panel B is the preferred estimator, but does not control for log(Iit). Panel C is
the Dave et al. (2021) estimator that uses log cases on the left-hand side and controls for geography-specific
linear time trends. Geographies are weighted by population in the regression. Standard errors are clustered
at the geography level. See Appendix Section A.2 for detail regarding this simulation exercise.
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Appendix Figure A7: Simulations with Alternative Specifications

Panel A: Preferred Estimator but Adding Geography FEs
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Panel B: Preferred Estimator but Setting γ at Half Its True Value
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Panel C: Preferred Estimator but Setting γ at Twice Its True Value
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Note: Figure plots estimated treatment effects ωk from the event-study specification outlined in equation
(14) using the data simulated from an SIRD model. The first column uses data simulated from an SIRD
model where the true treatment effect of the stay-at-home order is τ = 0. The second column uses data
simulated from an SIRD model where the true treatment effect of the stay-at-home order is τ =−.1. Panel
A is the preferred estimator, but adds geography fixed effects. Panel B is the preferred estimator, but sets
γ to half its true value. Panel C is the preferred estimator, but sets γ to twice its true value. Geographies
are weighted by population in the regression. Standard errors are clustered at the geography level. See
Appendix Section A.2 for detail regarding this simulation exercise.
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Appendix Figure A8: Dave et al. (2021) Estimators for Effect of Stay-at-Home Orders on COVID Cases

Panel A: 7-day Preperiod as in Dave et al. (2021)
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Panel B: 14-day Preperiod
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Panel C: 21-day Preperiod
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Note: Figure plots estimated treatment effects ωk from the event-study specification outlined in equation (15) using
the log of cases in a state for a given day and including state-specific linear trends. Panel A restricts the preperiod to
7 days. Panels B and C are the same as Panel A, except they use a 14- and 21-day preperiod. States are not balanced
across the event window. States are weighted by population in the regression. Data is restricted to dates on or before
April 20, 2020. Standard errors are clustered at the state level. See Appendix Section A.2 for detail regarding this
simulation exercise. 39



Appendix Figure A9: Effect of Stay-at-Home Orders on Contact Rate, All γ Values

Panel A: γ = 0
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Panel B: γ = 1/12
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Panel C: γ = 1/9
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Panel D: γ = 1/6
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Panel E: γ = 1/3
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Panel F: γ = 1
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Note: Figure plots estimated treatment effects ωk from the event-study specification outlined in equation
(14) using the log of new cases in a state for a given day as in Figure 1. Each panel uses a different value
of γ . CSAs are weighted by population in the regression. Standard errors are clustered at the CSA level
irrespective of order timing.
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Appendix Figure A10: Model Fit for Average Log Contact Rates, Full Lasso Model
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Note: Figure plots predictions of the estimated fixed differences in CSA log contact rates θ̂i in OLS re-
gressions using γ = 1/6. The plotted points are sized proportional to CSA population and the top 25 most
populous CSAs are filled in and labeled. In this figure, the fixed effects are averaged using population
weights and the population is summed across order timings when a CSA has multiple order timings. The
solid line is a 45 degree line indicating perfect prediction and the dashed line is a linear fit of the estimated
fixed effects on their predictions for the CSAs plotted. We drop two observations when plotting to focus on
the variation across the majority of CSAs.
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Appendix Table A1: CSA Summary Statistics

All Above Med. Below Med. Difference
Contact Rate Contact Rate

Log Contact Rate (βt , γ = 1/6) -2.259 -1.617 -2.901 1.285
(1.230) (0.138) (1.482) [0.902, 1.710]

Log Cases per 100,000 on April 30 5.100 5.403 4.798 0.605
(0.894) (0.820) (0.869) [0.298, 0.911]

Log Deaths per 100,000 on April 30 1.738 2.154 1.308 0.846
(1.203) (1.178) (1.078) [0.386, 1.210]

Log POI Visits 10.545 11.137 9.953 1.184
(1.125) (0.947) (0.971) [0.807, 1.542]

∆Log POI Visits -0.642 -0.658 -0.626 -0.032
(0.219) (0.193) (0.242) [-0.106, 0.055]

Share of Days with Order 0.650 0.697 0.603 0.094
(0.271) (0.232) (0.299) [-0.004, 0.189]

Log Pop Density 6.044 6.836 5.252 1.584
(1.501) (1.447) (1.083) [1.113, 2.056]

Log Population 13.436 14.114 12.758 1.356
(1.192) (1.018) (0.947) [0.967, 1.711]

Share Urban 0.821 0.881 0.761 0.120
(0.181) (0.153) (0.188) [0.065, 0.196]

Average Summer Temperature 88.440 87.480 89.400 -1.920
(5.215) (5.413) (4.867) [-3.634, 0.036]

Average Winter Temperature 50.292 50.386 50.198 0.187
(12.432) (13.712) (11.125) [-4.172, 4.822]

Share Commute Auto 0.887 0.864 0.910 -0.045
(0.076) (0.096) (0.038) [-0.073, -0.019]

Log International Flights 2.759 4.297 1.222 3.075
(3.084) (3.280) (1.901) [1.892, 4.128]

Republican Vote Share 0.491 0.445 0.538 -0.093
(0.152) (0.140) (0.151) [-0.149, -0.039]

Share Age ≥ 65 0.145 0.142 0.147 -0.005
(0.039) (0.041) (0.037) [-0.021, 0.009]

Share Black 0.157 0.163 0.150 0.014
(0.143) (0.129) (0.156) [-0.038, 0.066]

Share White 0.741 0.721 0.762 -0.040
(0.148) (0.135) (0.158) [-0.097, 0.010]

Share with Bachelor’s or More 0.304 0.328 0.280 0.047
(0.090) (0.077) (0.095) [0.015, 0.080]

Note: Table reports summary statistics of the average CSA covariate values between March 15 and April 30, except for cases and deaths for
which the April 30th values are used. The means across all CSAs and the grouped CSAs by average log contact rate log(βt) using γ = 1/6 are
reported along with bootstrapped standard errors. The difference-in-means between the top and bottom contact rate groups are reported along with
bootstrapped 95 percent confidence intervals using 100,000 random draws. Statistically significant difference-in-means are bolded. ‘∆Log Visits’
reports the change in log POI visits relative to March 1, 2020. ‘Share of Days with Order’ reports the share of the March 15–April 30 time period
in which a CSA is under a stay-at-home order.

42



Appendix Table A2: Sources of Non-pharmaceutical Interventions

Stay-at-home Business closures
Unweighted Weighted Unweighted Weighted

Inherited from State 0.898 0.464 0.923 0.629
NYT 0.895 0.638 0.000 0.000
Keystone Strategy 0.016 0.078 0.949 0.822
Crowdsourced 0.038 0.216 0.033 0.139
Hikma Health 0.018 0.057 0.016 0.038
Manual Entry 0.034 0.012 0.000 0.000

Note: Table summarizes the source of county stay-at-home and business closure policies. We report shares of county
policies both unweighted and weighted by county population. The first row indiciates the share of county policies that
are inheritied from the state; that is, counties did not enact the corresponding policy before the state took action. The
remaing columns indicate the share of county policies coming from each of the our sources. The manual entry source
is reserved for corrections to state policies which we hand checked. We only had to recode the Tennessee state policy.
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Appendix Table A3: Role of Policy in Explaining Aggregate Temporal Changes in Distancing, Economic,
and Health Outcomes

Panel A: Social Distancing and Economic Outcomes
(1) (2) (3)

Stay-at-Home Business Both Orders
Total Policy Total Policy Total Policy

POI Visits -0.672 -0.109 -0.665 -0.060 -0.700 -0.178
(0.008) (0.011) (0.018)

Homebase Wages -0.590 -0.092 -0.577 -0.105 -0.582 -0.183
(0.013) (0.023) (0.039)

Homebase Employment -0.592 -0.095 -0.584 -0.093 -0.620 -0.170
(0.012) (0.017) (0.038)

Facteus Debit Transactions 0.048 -0.055 0.056 -0.017 -0.003 -0.057
(0.007) (0.007) (0.013)

Facteus Total Spending 0.284 -0.071 0.302 -0.012 0.195 -0.069
(0.009) (0.010) (0.017)

Panel B: Contact Rate βt

(1) (2) (3)
γ = 1/12 γ = 1/9 γ = 1/6

Total Policy Total Policy Total Policy

R0 = 2.7 -0.574 -0.245 -0.610 -0.172 -0.634 -0.098
(0.107) (0.078) (0.052)

R0 = 3.0 -0.617 -0.221 -0.649 -0.155 -0.670 -0.088
(0.096) (0.070) (0.047)

R0 = 3.3 -0.652 -0.201 -0.681 -0.141 -0.700 -0.080
(0.087) (0.064) (0.042)

Note: Table reports the total and policy-induced changes in various outcomes as outlined in Section 5.1. In
Panel A, we consider the policy-induced changes of stay-at-home orders, business closures, and simultane-
ous stay-at-home and business closures. Each column restricts attention to the set of CSAs that receive a
given treatment, with Column (3) restricting to counties in which business closure and stay-at-home orders
went into effect on the same day. The treatment effects ωk used in Panel A set k = 1. In Panel B, all specifi-
cations estimate the effect of stay-at-home orders using estimates from the CSA level and use the estimated
treatment effect ωk from Table 1.
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Appendix Table A4: Decomposing Changes in Distancing, Economic, and Health Outcomes

Panel A: Stay-at-Home Orders
(1) (2) (3)

k = 1 k = 20 Pre-Trend
Total ∆ Policy-Induced ∆

POI Visits -0.672 -0.109 -0.165 -0.102
(0.008) (0.026) (0.028)

Homebase Wages -0.590 -0.092 -0.197 -0.039
(0.013) (0.047) (0.049)

Homebase Employment -0.592 -0.095 -0.206 -0.067
(0.012) (0.051) (0.053)

Facteus Debit Transactions 0.048 -0.055 -0.071 -0.023
(0.007) (0.012) (0.014)

Facteus Total Spending 0.284 -0.071 -0.034 0.006
(0.009) (0.020) (0.024)

Panel B: Business Closure Orders
(1) (2) (3)

k = 1 k = 20 Pre-Trend
Total ∆ Policy-Induced ∆

POI Visits -0.665 -0.060 -0.102 -0.060
(0.011) (0.031) (0.033)

Homebase Wages -0.577 -0.105 -0.273 -0.353
(0.023) (0.093) (0.096)

Homebase Employment -0.584 -0.093 -0.203 -0.262
(0.017) (0.068) (0.069)

Facteus Debit Transactions 0.056 -0.017 -0.016 -0.006
(0.007) (0.021) (0.023)

Facteus Total Spending 0.302 -0.012 0.017 -0.012
(0.010) (0.026) (0.029)

Note: Table reports the total and policy-induced changes in various outcomes as outlined in Section 5.1 using alter-
native estimators of the treatment effect. In Panel A, we consider the policy-induced changes of stay-at-home orders.
In Panel B, we consider the policy-induced changes of business closure orders. For k = 1 and k = 20, we use the
treatment effects ωk with corresponding value k. The ‘Pre-Trend’ estimator uses the trend in estimates in the two
weeks leading up to treatment to adjust the treatment effect ωk for k = 20.
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Appendix Table A5: Variance Decomposition for Differences in Log Contact Rates

Cross-CSA Variance of Log Contact Rate 1.514

Share of variance explained by:
Social Distancing 0.008

Policy 0.000
Timing of Virus 0.001
Observed Covariates 0.264

Population 0.182
Climate 0.000
Transport 0.000
Race 0.032
Partisanship 0.031
College Degrees 0.000
Age Demographics 0.000

Note: Table reports the cross-CSA variance of the average log contact rate log(βit) between March 15 and
April 30, 2020 in the first row. We calculate the cross-CSA variance of each explanatory variable and report
the share of the log contact rate variance accounted for by the variation in each set of explanatory variables
using the estimated coefficients from our lasso model in Section 5.2.
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